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J;(I) on z is no hindrance in the method proposed. 
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ON THE STUDY OF MINIMAX EVALUATION OF PARAMETERS OF 
NON-LINEAR SYSTEMS l 

V.G. POKOTILO 

The problem of the a posteriori minimax evaluation /l/ of the unknown 
parameters of non-linear systems of fairly general form is investigated. 
Approximations of information sets related to the observation process are 
defined using the non-linear theory of duality. The asymptotic properties 
of minimax estimates are also obtained in the case of perturbations that 
can be represented in the form of random processes. Problems of minimax 
observation as applied to non-linear systems were investigated in /2, 3/. 

1. Let us assume that the observed signal conforms to the equation 

Y (t) = g (& z, w U)), t E 10, T1 (1.1) 

where the unknown vector of the parameters z= R" and perturbation ~(2'; e) = {u(t), t E IO, 2’1) 
satisfy constraints of the form 

z E zO, w (t) E w (t) E w, 1 E [O, Tl 

The m-vector of the function g(., ., *) and the input data are assumed to be as follows 
1) 2' and W are compact in R” and R", respectively; 

2) g(t,z,w) is continuous with respect to the set of variables and, moreover, the set of 
functions {g(1,2, u), t 20) is equicontinuous for any zEZ"; 

3) the class of admissible perturbations is defined by the set 

E = {w (2’; .) E C’ IO, 2’1: w (t) E W(t), t E IO, Tl} 

4) the set of possible outputs of system (1.1) 

G (z) = {f (Z'; .): f (1) = g (t, z, w (t)); m (T; *) E E) (1.2) 

is closed in space c" [O, T]. 

Definition 1.1. The set 
Z (7'; y (+)) = {z’: y (7’; ,) E G (2’)) 

is called the information set, compatible with the signal y(T; a) = {y(t), TV IO, T]). 
Points z* (T)E Z(?'; y(.)), somehow separated, will be called the a posterioriminimax 

evaluations of the vector of parameters 2. 
To describe the weak dependence of random processes, which simulate perturbations in a 

stochastic system, we use following definition. 

Definition 1.2. The random process {w(t), t> 0) in the probability space {Q,X,P} with 
the phase space {R', A} is called entirely regular, if 

a (z) = sup AEro, BErYD+T, t>. I P (AR) - P (A) J’ (R) I + 0 t 

as z+ 00, where rbO, O,< a < b < + w,is the o-,algebra generated by {w(t), a < tQ b). 
We will present without proof the statement that defines the entirely regular processes. 



{w{(t), t> 0) be an entirely regular random process and iii s “ii 1, t, ' t,_, , 

P (Al) < 1 - e, e >o, i = 1, 2, . . .; ti -L co 

N 
P( n Q-,0, N-+Ga 

i-1 

be closed sets in Ii”. Denoting by sfA,B) the deviation of set A from 

6f& B) = inf {e 2 0: A E B + ES} 
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Lemma 1.1. Let 
such that 

as i-rm, 
Then 

2, Let A andB 
set B /S/, we obtain 

Here and henceforth S is the unit sphere in the corresponding space, 

Theorem 2 .l. Let (w(t), t>O} be an entirely regular random process whose realizations 
P are almost certainly admissible perturbations, and for any t > 0, e> 0 and w,c: W(t) 

p {w (4 E (ro* i sS) n W @)I > n (4 > O {“.I) 
Then with unit probability 

limT_., 6 (2 (T; Y (*)f, Z (2)) = 0 
Z (2) = 12' E 2": s~h,~ limb 6 (g (6 2, W (t)), g (4 2’ + 16, W (4)) = 0) 

Proof. We set the sequences {t, s = 1,2,...} and {w,~ W(t,),.s = 1,2,...} in correspond- 
ence with point z+e Z(z), and the positive numbers y(z*), e(z,), such that 

g k, z, 4 & g @,, z* + Y (ze) S, W f&H + a fz*) S 

The function r(a) marybe selected to be semicontinuous from below at the point z*. 
Indeed, for some sequences +-I. let there be a %>O, such that for all reasonably 

large k a Y (4 <Y (2.) -% exists. It can be assumed here, without loss of generality, 
that e 6,) 6 8 (dr hence far any t, and W,E W(t.),s= 1,2, . . . we have 

z &, 2, 4 =z &. zk -I- (v b.) --.) S, W 6.)) + e (4 S; 6. k = i, 2, 

Consequently, for reasonably large k 

P V,! 29 w*) = 4 (f. 2. + Y (%I $7 Jr (t,)) + E (4 s 

Y= 

which contradicts the definition of ~(2,) and a k). 
We fix the arbitrary 6>0 and consider the compact set & ==z" \(Z(z)+ 6s). Let 
min {v(z), ZE Kd) and points zir i =i 1, 2, . . ., N form the y-net of the set &. Then 

rs(Z(T;Y(.)),Zl(z))>6}={Z(T;yf.)fn K,#@)c i~~{~{~Yt.)) 17 izis$)#0) (2.2) 

Let us determine for each i = 1, 2, . . ., N the sequences t,' , w,’ E w psi), s = 1, 2, . , .: as 
t,'-+ce, s--too, and the numbers Ei such that 

g (t,', 2, Q')@ g (t*i, 2, c ys, w (t,")) "+" EiJ': s = 1, 2, . . . 

With the assumption made regarding the function g(,, ., v), we have from the last relation 

g (tJ'7 2, %si + &is)@ g (t,',Zi + yS, W (ta')): S = i, 2, . e . 

for certain 6i>O, i = 1,2,...,N. 
Consequently, 

Ri(T) 

(z(T;Y(-))n(zi$“yS)PO}C sQl (W(f,i)Gw~+6iSl 

Ri ( T) = max {s : t.’ C T} 

and by virtue of 12.2) the following inclusion holds: 

N R;(T) 
(6(z(T;Y(.)),Z(z))>8}ci~~ SE1 I~u(t,')6Gf:fGJ) (2.3) 

Using the condition of transfer of the measure P in the space of continuous functions 
with Bore1 u--algebra /6/, it can be shown that under the conditions considered here 

P (2 (R Y (-)), Z fz)) > 6) E 2 
Thus from (2.3) we obtain the following inequality: 
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p (6 (2 (T; y (. )), z (2)) > 6) s 5 p CR;{) w 02) 6s wsl + W)) 
i-l 

Since Ri(T)+ 00 as T+m,i=1,2 ,..., N, it follows from (2.1) and Lemma (1.1) that 
for any i = 1, 2,. . ., N 

P (yy {u; (t,‘) fg w*i + 6,s)) + 0, T-W 

Hence 

i.e. 6 (T) = 6 (Z (T; r(*)), I( )) z +O according to the probability P. The convergence with unit 
probability follows simply from the monotonicity of 6(T)in ?'. The theorem is proved. 

Corollary 2.1. If the parameters from Z" in signal (1.1) 
sense that Z(z) = (2) for any ZEZO, the minimax evaluations 

Note 2.1. If the signal (1.1) is formed at the output of 
L1 and /je(t)II is bounded when 120, then 

1 (2) = (2' E ZO: liml,,118 (t) (2 -I')! = 0) 

In that case the condition I(z)=(z) may be represented in 

lim l_mll~(f)zll>O. VZER”, z+O 

are distinguishable in the 
zt (T) are strictly justifiable. 

a linear system l? (t. z, 4 = S 0) z + 

the form 

3. To define the approximations of information sets we use the methods of the non-linear 
theory of duality. Consider, as in /7, a/, the following generalization of the concepts of 
conjugate function and the subdifferential in convex analysis. 

Let rp(., +): RP X P-R = R U {-co, +m); f(q): R"+!i and g(n): RP+R be arbitrary 
functions. 

Definition 3.1. /a/. We call the functions 

fn (44 = inf {f (4 + cp ($4, r E El”) 
g” (4 = sup .{g ($4 - cp (9,. 4, 9 E W 

the lower and upper pconjugate functions of the functions f(.) and g(e), respectively. 

Definition 3.2. The vector VE RP is called the qz-subdifferential of the function j(e) 
at the point zO, if 

f (4 + cp (% 4 >f (20) + cp (Ip.,ro), VXE R" 

The set of subdifferentials of the function j(e) is denoted at the point xoby aej(zo). 
Subsequently we assume that the function cp (97 4 is continuous in 5. Simultaneously 

with the support function p(. 1 X) of set X we shall consider also the cpsupport function of 
this set which is defined by the equation 

pc (rl, IX) = inf {CpW 4, 5 e W 
Assuming that the sets Z(T; y(e)) are approximated by measuring the signal (1.1) only 

at a finite number of points, we consider the set of piecewise constant functions in the in- 
terval IO, Tl. 

Theorem 3.1. The inclusion 

Z (T; Y (.)) c (2': cp (9,s') > Y (T; 4), VIP E RP} 

v(T;~)=sup{F"(h(.):g) - <h(*),V(*)); h(*)EW 

F(h(.);z)=p(h(.),G(z));(h(.),y(.))=5dh(t)y(t) 
0 

holds. 
Proof. By definition of the information set, s E Z (T: Y t.)), if and only if 

<h(.),~(.))-_(A(.), f(*)>>O, V~(*)EJ’~IO,TI (3.1) 

for some possible output of system (1.1). For the system of inequalities (3.1) to be compat- 
ible on the set G(z) defined by relation (1.2), it is necessary that 

0. (.)I Y(a)) - F(h(*); 2) 2 0, Vh (*) E V" IO, Tl 

Using the analogue of the Young-Fenchel inequality, that follows from definition 3.1, we 
obtain that for all I.(-)= V"'[O, 2'1 
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(A (.), y (.)> z- F" (h (.); Q) > --cc ($, z) 

and, consequently, 

cP(~,z)~ssup(F"()i(~);~)-~h(~),~(~)); E.(.)En) 

The theorem is proved. 
To obtain a definition of the approximations of the sets z(Z’; y(e)) in terms of their 

support functions we shall cite several statements without proof. 

Lemma 3.1. The positive homogeneity of the function y(T; .) follows from the positive 
homogeneity of the function (p(.,x). If, in addition, (p(+, z) is a concave function, then 

Y CT; .) is a positive homogeneous concave function. 

Lemma 3.2. If cp(=, z) and o(.) as RP+R are positive-homogeneous functions 
o(q) = W"n (11) for all $ E RP, then o(.) is a m-supporting function of some set. 

From theorem (3.1) and Lemmas 3.1 and 3.2 we obtain the following corollary. 

Corollary 3.1. If (p(.,z) is a positive-homogeneous function then 

2 (T; Y (.)) c 2, (T; Y (+)) c 2" 

(pm (+ 12, (T; Y (.))) = y"" (T; Q)) 

It also follows fromLemma3.1 that in certain cases it is possible to define the 
imations of information sets byusingthe closing of the function y(T; *) in the sense 
analysis. In particular the following corollary holds. 

and 

approx- 
of convex 

Corollary 3.2. 

Here x**(s) is the 
/5/). 

Note 3.1. For 

frl (9) = -/* (0) and 

If s! 04, 4 = (4~~ z> + <%, f (z)>, then 

Z (T; y (.)) c 2, (T; y (.)) = {z’: (-z’, -f (2’)) E 2, (T; 

P bP I Zs CT; Y (-)I) = x** ($4; x (44 = - Y CT: 9,) 

second conjugate function in the usual sense of 

linear systems when n(t,z,~)= 13 (t)z+ W, setting 

T 

Y.(.))l 

convex analysis (see, e.g, 

m($,z) = --c$,z,, we obtain 

y(T; V)=-inf{P(-k(.)[E)+<h(.), y(.)>:$=S db(r)l3(t). A(.)E 
0 

Hence, if the sets Z" and W(t) are convex, and the multivalued mapping W(.) is contin- 
uous in the Hausdorff metric, the equation 

holds /l/. 
P (rl, 1.z CT; Y (.I)) = --Y CT; 9,) 

4. We will now study the asymptotic properties of the approximations of information sets 
obtained in Sect.3. 

We define for L, T > 0 and natural 1 the sets 

@ (I, L, T) = {th-r k = 1, 2, . . ., I; t, > T; tlc+I > t, + L, k = 
1, 2, . ., 1) 

(th., k = 1, 2, . . . , 1) ~6 (1, L, T)); 

Here conX denotes the conicalenvelopeof the set X and &&(h(.);z) is the cp-subdifferential 
of the function F@(e); .) at the point z. 

Theorem 4.1. Under the conditions of Theorem 2.1 

P~(~IIH~(T;Y(.)))~~~(~,z) as T-+00 

with unit probability for all $EY. 

Proof. Using the definition of the cp-subdifferential and the analogueof theYoung-Fenchei 
inequality, we can show that 

v (T; 44 > 'P (4'. 4 -i- m (T; $9 4 (4.1) 
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0 (T; $2) = sup {F (h (.); z) - (h (.), y (.)}: +$ E &.F (h (.); z); h E n} 

We fix $J:EYCY((zf, By the definition of the cone Y(z) and M>O and a natural. I exist 
such that for any T and L scme f&: k = 1, 2, . . ., 8) E 8 (2, &, T) and h 1-f E n can be found for 
which the inclusion 

holds. 
Consequently it is possible to indicate for each L a set of pairs Wik, &), k = 1, 2, . . *, 

1, i = 1, 2, . . .) such that 

@ik, k = f, 2, * . I, I) E 8 (l, L, t&j, tix + m, i 3 M 

We put 

By virtue of the regularity of the process (u3fQ,t 2 0) and condition 2.1 the inequality 

J'(AAc1 - 6 holds fox some 6>0 and fairly large L. 
Having thus set the number L and the set {(hik, ii,), k = 1, 2, . . ., 1, i = 1, 2, . . .} related 

to it, from (4.1) we obtain 

It can be shown that under the conditions here (rp($,z)-y(T;$)> I?}= z, and hence the theorem 
fallows from (4.2). Lemma 1.1, and the monotonicity of Y(!?';$) with xespect to T. 

By virtue of Note 3.1 the theorem proved here directly generalizes the basic results of 
1'9, lOi* 

5. When using the usual concepts af duality to the analysis of non-linear systemsr based 
on the notation of conjugate functions in convex analysis, the degeneracy of the functions 
~a(T;q) and ~(T;JI,z) would be a characteristic feature. These functions are defined by rela- 
tions (3.1) and (4.1) for all *ERP and a,F(h.(.):r)= m for all J.(v)@ vm[O, TJ) and, as a 

corollary, we would have degeneracy in stochastic systems of the conditions of convergence of 
the approximatiuns of infonnations sets. We shall show, using a simple example, that the use 
of non-linear constructions of duality enables us to avoid this. 

It can be seen that when 3>,0 

(a$ (j" (Q; z):k (,i E -1 (& t, T)1 I> ja,i: (A (-); 51; 1 I.1 ei A fi, 0, 0)) 

and consequently 'P#@. In particular 

((O>%) : 8 -G 0, *I = 0) c Ye Vu > 0 

Example 5.2. Consider the signal 

Y (i) = 2 (1 -t- u (f)), wtt) E i-1. il 

Bere F jht (.j: 2) = &I: - j ?.,I j 2 j , and unlike the previous case, the function P&f.);-1 is not convex, 
Because of this the usual duality cmstructions prove to be unsuccessful since F* (A (-);*) = -to, 

v'i, (.) E Y [O, Tf, and \cssBR, while, at the same time, selecting ~($,z)=g~+q~,fx[, we obtafn 

Y (I).X eon (8,F (A, f.): I); 1 It / < i) 
y 3 wh wi 19 I d w 
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WITH AFTEREFFECT* 

Some problems of control and observation /l-3/of linear dynamic systems 
with aftereffect, defined by differential and integral equations with 
deviating arguments are considered. The theory of duality fortheproblem 
of minimizing the Boltz convex functional on the trajectories of a func- 
tionally differentiable system of the neutral type with a lag in the control, 
state, and velocity variables is developed. New concepts of controll- 
ability are introduced into the system with aftereffects and phase 
constraints, as well as dual concepts of ideal observability of their 
conjugate system of integral equations with a lead in conditions of 
incomplete information. The observability concepts introduced here are 
connected with the restitution of the 
system containing minimum information 
calculated uniquely. The schemes and 
used in differential-game problems of 
/4-6/. 

1. The problem of optimal control. 

generalized final state of the 
to enable the future motion to be 
results obtained enable them to be 
dynamic systems with aftereffects 

Consider a linear control system whose dynamics 
along the segment [t,,t,l is defined by differential equations with a deflecting argument of 
the neutral type 

z‘ (1) = A (t) .z (t) + Al (t) t (t - h) + A, (t) 2’ (t - 4 + B (t) IJ (4 + B, (4 ZJ (t - h) *(I.*) 

where h> 0 is the lag of the control, state and velocity variables. 
Systems with an aftereffect of the type (1.1) occur in problems of mechanics, automatic 

control, economics, etc. (see the numerous examples in /7/). It is important to allow for 
the action of the aftereffect when defining real dynamic systems and related control and 
observation processes. 

Let us consider the problem of minimizing the Boltz functional 

1(2,~)=a,(t(t~),5(t~)) +i F(s(l),rc(t),t)dt+inf (1.2) 
1. 
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